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We examine the possibility that a metastable quantum state could experiment a phe-
nomenon similar to thermal activation but at zero temperature. To do that we study the
real-time dynamics of the reduced Wigner function in a simple open quantum system:
an anharmonic oscillator with a cubic potential linearly interacting with an environment
of harmonic oscillators. Our results suggest that this activation-like phenomenon exists
indeed as a consequence of the fluctuations induced by the environment and that its
associated decay rate is comparable to the tunneling rate as computed by the instanton
method, at least for the particular potential of the system and the distribution of frequen-
cies for the environment considered in this paper. However, we are not able to properly
deal with the term which leads to tunneling in closed quantum systems, and a definite
conclusion cannot be reached until tunneling and activation-like effects are considered
simultaneously.
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1. INTRODUCTION

The study of the decay rate of a state trapped in a metastable state by a
potential barrier has a long and distinguished history in both statistical physics
and quantum mechanics. In statistical mechanics one is usually worried about the
thermal activation effect, by which a particle escapes over a potential barrier due
to the fluctuations induced by a thermal bath. As a paradigm we have the classical
work by Kramers (1940), who considered a classical Brownian particle trapped
in a metastable minimum and computed the escape probability by analyzing the
dynamics of its probability distribution function, in both the underdamped and
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overdamped cases. In quantum mechanics one is interested in the tunneling effect,
by which a particle escapes the local minimum by traversing the potential barrier
through a classically forbidden region. A technique which has been of great success
to compute the tunneling rate in quantum mechanics and quantum field theory
is the instanton method (Callan and Coleman, 1977; Coleman, 1977, 1985), where
the decay probability can be computed in terms of the classical trajectories in
imaginary time. In both thermal activation and tunneling the decay rater , meaning
the decay probability per unit time, follows an approximate exponential law,r ≈
Aexp (−B). In thermal activation,B = Vs/(kT), wherek is Boltzmann’s constant,
T is the absolute temperature, andVs is the height of the free energy measured
from the metastable minimum; in tunnelingB = SE/h whereSE is the action for
a suitable trajectory which goes under the barrier in imaginary time.

In recent years mesoscopic physics has become a center of attention. Exper-
imental advances are pushing the boundaries between classical and quantum sys-
tems and lead, in particular, to the possibility of observing quantum tunneling for
systems that can be described by macroscopic variables. These are essentially open
quantum systems, which are characterized by a distinguished subsystem within a
larger closed quantum system, described by some degrees of freedom which are
subject to physical experimentation, and the rest of the system, described by gen-
erally unobservable degrees of freedom which act as an environment or a bath for
the distinguished subsystem. The environment induces both dissipation and noise
to the distinguished system, which is usually referred to as the “system” for short.
Many of these open quantum systems can be equivalently represented by a particle
subject to an arbitrary external potential and coupled to an environment consisting
of an infinite set of independent harmonic oscillators. A number of known physical
systems can be modeled by adjusting the coupling of the system and environment
variables and choosing appropriate potentials.

Caldeira and Leggett (1981, 1983b), in two influential papers, considered the
effect of an environment on quantum tunneling. They were able to generalize the
instanton method to a simple open quantum system. In particular, they considered
an anharmonic quadratic plus cubic potential bilinearly coupled an environment
at zero temperature consisting of an infinite set of harmonic oscillators, with fre-
quencies distributed according to the so-called ohmic distribution. They argued
that this system is a very good model for the flux trapped in a superconducting
quantum interference device (SQUID), a single Josephson junction biased by a
fixed external current, and others. Assuming that the environment degrees of free-
dom are only weakly perturbed by the interaction with the system, they concluded
that dissipation always tends to suppress tunneling.

Fujikawa et al. (1992a,b) reanalyzed the same problem as Caldeira and
Leggett employing canonical perturbation theory and the second quantization for-
malism for the system instead of the instanton method, with a quadratic plus quartic
potential to have a well-defined ground state. By considering the two lowest energy
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eigenstates of the system, they were able to reproduce Caldeira and Leggett’s re-
sults. They studied the effect of the next two excited states and concluded that,
once these states are taken into account, dissipation can enhance tunneling for some
distributions of frequencies of the environment, but not for the ohmic distribution
considered by Caldeira and Leggett.

In some recent papers a different real-time approach to compute the vacuum
decay rate in quantum field theory was introduced (Calzettaet al., 2001, 2002) as
a first step to consider situations far from the equilibrium. The analysis is based on
the time evolution equation, the so-called master equation, for the reduced Wigner
function describing the open quantum system. The quantum field theory problem
was reduced to an open quantum system described by a single degree of freedom
associated to the modes of the field which are nearly homogeneous within a region
whose size corresponds to a nucleating bubble of true vacuum, and coupled to an
infinite set of harmonic oscillators corresponding to the inhomogeneous modes
of the field. The coupling was linear in the system variables but quadratic in
the environment ones. The master equation contained dissipation and noise terms,
which describe the influence of the environment on the system, as well as derivative
terms in the momentum coordinates (third order for a cubic potential), which are
responsible for quantum tunneling in closed quantum systems.

Unfortunately it is not possible to compute the total decay rate in a closed an-
alytic or semianalytic form because it is very difficult to deal with the third-order
derivative terms. One should resort to methods such as those based on matrix
continued fractions to compute the decay rate master equations with third-order
derivative terms (Risken and Vogel, 1988). However in the work by Calzettaet al.
(2001, 2002), as well as in the present paper, one was primarily interested in the
contribution from the environment backreaction on the vacuum decay rate and,
hence, the rather drastic approximation of neglecting the third derivative term re-
sponsible for tunneling was made. The decay rate obtained was entirely due to
the terms which at high temperature are responsible for thermal activation. In
principle this approximation should be correct provided that the timescales asso-
ciated to the activation-like effect and the tunneling effect are very different. The
remarkable result was that the activation-like effect produced by the backreaction
of the inhomogeneous modes was, in fact, larger than the tunneling effect obtained
with the instanton method.

The fact that activation may be important as a backreaction effect can be
understood by noting that the characteristic timescale for the decay process is much
larger than the dynamical and relaxation timescales (see Calzetta and Verdaguer,
1999, for a detailed analysis). In fact, although the effects of dissipation and noise
are very small on the characteristic dynamical timescale, they can have a cumulative
effect which becomes important in the long run. The real-time approach based on
the master equation seems a suitable technique to deal with those backreaction
effects, but is difficult to implement when addressing the tunneling effect. On the
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other hand, the instanton method is very well suited for studying the tunneling
effect, but, at least in some cases, seems to underplay the backreaction of the
environment on the system.

The aim of this paper is to study whether the results obtained by Calzettaet al.
(2001, 2002) are a particular feature of the particular system that they considered
or, on the contrary, a general feature which can be extended to a wider class of
systems. Therefore, using the real-time techniques mentioned earlier, we reanalyze
the simpler model studied by Caldeira and Leggett (1981, 1983b) to check whether
a similar activation-like effect is also found in that case.

There are several differences between the model considered in this paper and
the field theory case analyzed by Calzettaet al. (2001, 2002). First, we consider
here a bilinear coupling between the system and environment, whereas the cou-
pling considered in the field theory case was quadratic in the environment degrees
of freedom. Second, in the field theory case both the spectral distribution of the
environment frequencies and the value of the coupling constant were a priori deter-
mined by the particular system–environment separation considered there, whereas
we shall freely choose the spectral distribution and the coupling parameter. Third,
we will employ several techniques (harmonic approximation, Kramers method,
and lowest eigenvalue expansion) which could not be applied to the field theory
problem because of the particular features of that model.

The plan of the paper is the following. In Section 2 we set up the model. In
Section 3, we present the master equation for the reduced Wigner function. Then,
following closely Calzettaet al.(2002), we neglect the third-order derivative term
and concentrate on the weak dissipation case by studying the averaged dynamics
over an oscillation period. In Section 4 we obtain an analytical expression for the
decay rate by assuming a harmonic approximation for the classical trajectories.
Two alternative approaches are employed. The first one is based on a perturba-
tive expansion for the lowest eigenvalue, whereas the second one is based on
Kramers’s classical work. Finally, in Section 5 we discuss the implications of our
result.

2. THE OPEN QUANTUM SYSTEM MODEL

Let us consider a particle of massM , the “system,” subject to an arbitrary
potentialV(x) and coupled to a bath of independent harmonic oscillators of massm,
the “environment.” Let us assume that the system and the environment are linearly
coupled. The action for the whole set of degrees of freedom is given by

S[x, {qj }] = Ss[x] + Se[{qj }] + Sint[x, {qj }], (1a)

where the terms on the right-hand side, which correspond to the action of the
system, the environment, and the interaction term respectively, are given by
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Ss[x] =
∫

dt

(
1

2
Mẋ2− V(x)

)
, (1b)

Se[{qj }] =
∑

j

∫
dt

(
1

2
mq̇2

j −
1

2
mω2

j q
2
j

)
, (1c)

Sint[x, {qj }] =
∑

j

cj

∫
dt x(t)qj (t), (1d)

with cj being the system–environment coupling parameters andω j the environ-
ment oscillator frequencies. The system potentialV(x) includes a quadratic part,
corresponding to an oscillator of frequencyÄ0, and an anharmonic partV (nl),

V(x) = 1

2
Ä2

0x2+ V (nl)(x). (2)

At this point, the potentialV (nl)(x) is arbitrary, but later on we will take a cubic
potentialV (nl)(x) = −(λ/6)x3. It will be convenient for us to rewrite the interaction
term as

Sint[x, {qj }] =
∫ ∞

0

2mω

πc(ω)
I (ω)

∫
dt x(t)q(t ;ω), (3)

wherec(ω) andq(t ;ω) are functions such thatc(ω j ) = cj andq(t ;ω j ) = qj (t)
and

I (ω) =
∑

j

πc2
j

2mω j
δ(ω − ω j ) (4)

is the spectral density of the environment.
When the system and the environment are initially uncorrelated, i.e., when

the initial density matrix factorizes, the evolution for the reduced density matrix
can be written as

ρr(x, x′, t) =
∫

dxi dx′i J(x, x′, t ; xi , x′i , ti )ρr(xi , x′i , ti ), (5)

where the propagatorJ is found to be, in a path integral representation,

J(xf , x′f , t ; xi , x′i , ti ) =
∫ x(t)=xf

x(ti )=xi

Dx
∫ x′(t)=x′f

x′(ti )=x′i

Dx′ ei (S[x]−S[x′]+SIF[x,x′])/ h, (6)

whereSIF[x, x′] is the influence action, related to the influence functionalFIF in-
troduced by Feynman and Vernon (1963) throughFIF[x, x′] = exp(i SIF[x, x′]/h).
For a Gaussian initial density matrix for the environment, the influence action can
be expressed as (Caldeira and Leggett, 1983a; Feynman and Hibbs, 1965; Feynman
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and Vernon, 1963):

SIF[x, x′] = −2
∫ t

ti

ds
∫ s

ti

ds′1(s)D(s, s′)6(s′)

+ i

2

∫ t

ti

ds
∫ t

ti

ds′1(s)N(s, s′)1(s′), (7)

where6 ≡ (x + x′)/2 and1 ≡ x′ − x. The kernelsD(t, t ′) andN(t, t ′) are called
the dissipation and noise kernels, respectively. If initially we are at thermal equi-
librium at a temperatureT , these kernels are given by

D(t, t ′) =
∫ ∞

0

dω

π
I (ω) sinω(t − t ′), (8a)

N(t, t ′) =
∫ ∞

0

dω

π
I (ω) coth

(
hω

2kT

)
cosω(t − t ′). (8b)

The influence action can be divergent and a renormalization procedure may
be required, as can be seen by reexpressing the influence action as

SIF[x, x′] =
∫ t

ti

ds
∫ s

ti

ds′1(s)H (s, s′)6(s′)

+ i

2

∫ t

ti

ds
∫ t

ti

ds′1(s)N(s, s′)1(s′), (9)

where, at least formally,H (t, t ′) ≡ −2θ (t − t ′)D(t, t ′), beingθ (t − t ′) the step
function. The kernelH (t, t ′) is a product of two distributions, which in general
is not well defined and may contain divergences. Nevertheless, it is always pos-
sible to introduce suitable counterterms in the bare frequency of the systemÄ0

in order to compensate the divergent terms coming fromH (t, t ′) (see Caldeira
and Leggett, 1983a; Calzettaet al., 2003; Roura and Verdaguer, 1999, for more
details). However in the particular problem in which we are interested, this issue
will turn to be unimportant since the divergent parts of the kernelH (t, t ′) will
cancel in the final results. Thus, we can use the bare kernelH (t, t ′) (with some
implicit regularization) instead of its renormalized expression.

Following Caldeira and Leggett (1981, 1983b), we shall consider the case
of zero temperature and ohmic environment, in which we have a continuum of
harmonic oscillators in the environment distributed according to

I (ω) = ηω. (10)

With this spectral density the expectation value ofx̂(t) obeys the equation of
motion of a classical damped oscillator with a friction coefficient given by the
proportionality constantη. In this case dissipation and noise kernels are
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Fig. 1. Plot of the potentialV(x) under which the particle is
confined. The maximum of the potential barrier is atxs and cor-
responds to an escape energyεs, which we consider much larger
than the zero-point energy of the harmonic oscillator,hÄ0/2.

found to be

D(t, t ′) = ηδ′(t − t ′), (11a)

N(t, t) = η

π
Pf
−1

(t − t ′)2
, (11b)

where Pf indicates the Hadamard finite part prescription (Schwartz, 1957). Later on
we will need the expressions of the Fourier transforms of the noise and dissipation
kernels,

D(t, t ′) =
∫

dω

2π
e−iω(t,t ′) D̃(ω), (12a)

N(t, t ′) =
∫

dω

2π
e−iω(t,t ′) Ñ(ω), (12b)

which in the case of zero temperature and ohmic environment are given by

D̃(ω) = iηω, Ñ(ω) = η|ω|. (13)

We will concentrate on the potentialV(x) = (1/2)MÄ2
0x2− (λ/6)x2, which

exhibits a metastable minimum atx = 0 and an unstable maximum atx = xs =
2MÄ2

0/λ, which corresponds to an energyεs = v(xs) = 2M3Ä6
0/(3λ

2) (see Fig. 1).
The system state will be peaked located around the metastable minimum atx =
0, and can escape through the potential barrier. We will consider that once the
particle exits the potential well region, it never reenters. Since this potential is
not bounded from below, it should be understood as an approximation to a more
realistic situation in which there exists an absolute minimum, located at a much



P1: IZO

International Journal of Theoretical Physics [ijtp] pp924-ijtp-469730 September 26, 2003 15:45 Style file version May 30th, 2002

1264 Arteaga, Calzetta, Roura, and Verdaguer

lower energy, so that the return probability is negligible. We will restrict to the
situation in which the energy barrier is much larger thanhÄ0.

3. PHASE-SPACE DYNAMICS

3.1. Evolution of the Reduced Wigner Function

The reduced Wigner functionWr is a phase space distribution defined from
the reduced density matrixρr by the following integral transform:

Wr(x, p, t) = 1

2πh

∫ ∞
−∞

d1 eip1/ hρr(x −1/2, x +1/2, t). (14)

The Wigner function is a quantum mechanical analogue of a phase-space prob-
ability distribution (Hillery et al., 1984; Wigner, 1932). The partial distribution∫∞
−∞ dpWr(x, p, t) gives the probability density of finding the system at the posi-

tion x; in the same way,
∫∞
−∞ dxWr(x, p, t) gives the probability density of finding

the system with momentump. However, the uncertainty principle prevents us from
determining at the same time the position and the momentum of a particle, so that
the Wigner function cannot be interpreted as a true probability density in phase
space. In fact, the Wigner function is not necessarily positive-defined everywhere
and in general it may acquire negative values.

Up to terms of orderc2
j , hc2

j , andh2, with cj being the environment coupling
constants, the reduced Wigner functionWr = Wr(x, p, t) obeys the following evo-
lution equation (Calzettaet al., 2002; Roura, 2001), which we shall call master
equation:

∂Wr

∂t
= {Hs, Wr}PB+ ∂

∂p
(DWr + h{N , Wr}PB)− h2 λ

24

∂3Wr

∂p3
, (15)

where{·, ·}PB are the Poisson brackets,

{ f, g}PB = ∂ f

dx

∂g

∂p
− ∂ f

∂p

∂g

∂x
,

Hs is the reduced system Hamiltonian,

Hs = p2

2M
+ 1

2
MÄ2

0x2− λ
6

x3, (16)

andD andN are given by

D(t) = −2
∫ t

ti

dt′ D(t, t ′)X(t ′; x, p), (17a)

N (t) =
∫ t

ti

dt′ N(t, t ′)X(t ′; x, p), (17b)
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whereX(t ′; x, p) is a solution of the classical equations of motion associated to
the HamiltonianHs,

d X

dt′
= P

M
, (18a)

d P

dt′
= −MÄ2

0X + λX2

2
, (18b)

with final conditionsX(t) = x andP(t) = p.
For the case of ohmic environment the friction coefficientη is proportional

to c2
j , and the above approximation for the evolution equation will be valid and

consistent when the conditionSÀ h& Sγ /Ä0 is fulfilled, whereγ = η/(2M) is
the characteristic dissipation frequency andS is the typical action for the process
considered. If we are interested in studying the jump over a potential barrier of
heightεs, this condition can be restated asεsÀ hÄ0& εsγ /Ä0, which shows that
the master equation will be valid for small dissipation and large energy barriers.

At this point it is worth making a comment on the notation. Throughout this
paper we will use lowercase letters (x, p, θ , j . . .) to indicate phase-space vari-
ables, which are the arguments of phase-space distributions such as the Wigner
function, whereas the corresponding uppercase letters (X, P,2, J . . .) will indi-
cate time functions which give the phase-space position of a particle in a given
time.

To introduce the Fourier transform of the coefficientsD andN later on, it
will be convenient for us to replace the integration limit in Eqs. (17a) and (17b)
by−∞, although the initial conditions are set up atti = 0. For the coefficientD
this does not introduce any error, since the dissipation kernel only has support in
t = t ′. For the coefficientN , this introduces a small error, which can be estimated
by performing the integral in Eq. (17a), choosing a periodic function forX(t ′) of
frequencyÄ0; this will be enough in the context of the adiabatic approximation,
which we will introduce later on. The result of the calculation shows that for
timest , which verify t À Ä−1

0 , the contribution of the integral from−∞ to 0 is
comparatively small. Since at the end we shall be interested in studying timescales
of the order of the decay time, which are much larger than the characteristic
dissipation timeγ−1, which will in turn be much larger than the time of oscillation
Ä−1

0 , the approximation can be considered safe.
If the system were isolated, Eq. (15) would reduce to

∂W

∂t
= {Hs, W}PB− h2 λ

24

∂2W

∂p3
, (19)

whereW is the Wigner function of the closed system. This equation is exactly
equivalent to von Neumann’s equation for the density matrix of a one-dimensional
quantum mechanical system with the potentialV(x). If the last term in this equation
were not present, the evolution of the Wigner function would be entirely equivalent
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to that of a classical ensemble in the phase space. Hence, the term with the third
derivatives must be the responsible for tunneling. In principle, one could compute
the tunneling amplitude from Eq. (19), but in practice tunneling is more easily
calculated with the WKB approximation to the Schr¨odinger equation (see, e.g.,
Galindo and Pascual, 1991; Landau and Lifshitz, 1977) or the instanton method
(Callan and Coleman, 1977; Coleman, 1977, 1985). As we have discussed, in this
contribution we are not going to deal with tunneling, but rather to compute the
effect due to activation. With this aim, we shall neglect the last term of Eq. (15),
which is responsible for tunneling. Hence we will use the following equation for
the distribution functionWr :

∂Wr

∂t
= {Hs, Wr}PB+ ∂

∂p
(DWr + h{N , Wr}PB). (20)

Formally Eq. (20) can be thought as a Fokker–Planck equation, describing
the dynamics of an ensemble of points in the phase space. The dynamics of this en-
semble of points can be equally characterized by means of the following Langevin
equation:

Ẋs = Ps

M
, (21a)

Ṗs = −V ′(Xs)−
∫ ∞
−∞

dt′ H (t, t ′)Xs(t
′)+ ξ

(21b)= −MÄ2
0Xs− ηẊs+ λX2

s

2
+ ξ,

whereξ is a Gaussian noise of zero mean and correlation function

〈ξ (t)ξ (t ′)〉ξ = hN(t, t ′), (21c)

Xs = Xs(t, ξ ] and Ps = Ps(t, ξ ] are the stochastic functions corresponding to the
phase-space variablesx and p, respectively, and the second equality in Eq. (21b)
is just valid in the case of ohmic environment. This Langevin equation does not
describe actual trajectories of the system (meaning a continuous sequence of pro-
jectors for the position and the momentum of the system at each instant of time,
which would violate Heisenberg’s uncertainty principle) but must be regarded as
a formal computational tool, in the same way as the Wigner function does not
correspond to a true probability density. In fact, Langevin-like equations appear
naturally in the context of open quantum systems when trying to derive the dy-
namics of the reduced Wigner function from the path integrals in Eq. (5) (Calzetta
et al., 2003).
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3.2. Action-Angle Variables

To obtain explicit expressions for the coefficientsD andN , we need to
solve the set of Eqs. (18), which describe the motion of a classical particle in the
potentialV(x). Since we are interested in the motion inside the potential well,
which is periodic, it is possible to introduce action-angle variablesθ and j (see,
e.g., Goldstein, 1980). The action variable is defined by

j = 1

2π

∮
P d X, (22)

whereas the angle variableθ changes from zero to 2π and is canonically conjugate
to j . Recall that the reduced system Hamiltonian can be entirely written in terms
of the action variable,Hs = Hs( j ).

We shall considerθ and j phase-space variables likex and p, and we will
analyze the Fokker-Planck equation in terms of these new variables. However, the
solution of Eqs. (18) can be also described by giving the trajectory of the particle in
theθ − j space. In a completely analogous way toX andP, we will consider the
functions2(t ′; θ , j ) andJ(t ′; θ , j ), which give the angular position and action of a
particle satisfying the set of Eqs. (18), with final conditions2(t) = θ andJ(t) = j .
The functions2 and J satisfy the equations of motioṅ2 = ω(J) and J̇ = 0,
whereω( j ) = d Hs( j )/dj is the frequency of oscillation. With the aforementioned
boundary conditions, these equations of motion can be immediately solved to give
2(t ′; θ , j ) = θ +Ä( j )(t ′ − t) andJ(t ′; θ , j ) = j .

Sinceθ is an angle, the transformation equationx = x(θ , j ) is periodic in
θ , x(θ , j ) = x(θ + 2π, j ) and thus it can be decomposed in terms of a Fourier
series with respect toθ ,

x(θ , j ) =
∞∑

n=−∞
einθxn( j ), (23)

wherex−n( j ) = x∗n( j ) sincex is real. The trajectory of the particle can be also
decomposed in terms of the Fourier series associated to the angular coordinate:

X(t ′; θ , j ) =
∞∑

n=−∞
ein2(t ′;θ , j )xn(J(t ′; θ , j ))

(24)

=
∞∑

n=−∞
ein[θ+Ä0(t ′−t)]xn( j ).

Then we can write the functionsD(t) andN (t) appearing in Eq. (20) as

D(t) = −2
∫ t

−∞
dt′ D(t, t ′)X(t ′) =

∞∑
n=−∞

einθxn( j )Dn( j ), (25a)
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N (t) =
∫ t

−∞
dt′ N(t, t ′)X(t ′) =

∞∑
n=−∞

einθxn( j )Nn( j ), (25b)

whereDn( j ) andNn( j ) are given by

Dn( j ) =
∫

dω

2π

2i D̃(ω)

ω + nÄ( j )− i ε
, (26a)

Nn( j ) =
∫

dω

2π

−i Ñ(ω)

ω + nÄ( j )− i ε
. (26b)

To derive these last expressions, we have made use of the following equality:∫∞
0 exp(isu) = i /(s+ i ε), whereε is an arbitrarily small positive real number.

3.3. Weak Dissipation Limit: Averaging Over Angles

As discussed by Kramers (1940), in the case of small dissipation, i.e.,γ ¿
Ä0, the phase-space dynamics will mostly correspond to a gradual change of
the distribution of the ensemble over the different energy values. The change of
the Wigner function over an oscillation period will be small, so that we may suppose
that the reduced Wigner function only depends on the action variablej (or the
energyE), and does not depend on the angular variableθ , Wr(θ , j ) = F( j ). Thus,
we can obtain a simpler equation by averaging all the terms of the Fokker-Planck
equation over the variableθ . Furthermore, in this case the averaged Wigner function
F is a partial distribution, and hence it admits a true probabilistic interpretation,
as opposed to the nonaveraged Wigner function.

Notice that in this case{Hs, F}PB = 0 and that, for any phase-space function
9 = 9(θ , j ),∮

dθ

2π

∂9

∂p
=
∮

dθ

2π
{x,9}PB =

∮
dθ

2π

(
∂x

∂θ

∂9

∂ j
− ∂x

∂ j

∂9

∂θ

)
=
∮

dθ

2π

(
∂x

∂θ

∂9

∂ j
− ∂2x

∂ j ∂θ
9

)
= d

d j

∮
dθ

dπ

(
∂x

∂θ
9

)
.

Using the last expression, we can average Eq. (20) to obtain the following averaged
Fokker-Planck equation:

∂F

∂t
= ∂

∂ j

(
hN̄ ∂F

∂ j
+ D̄F

)
, (27)

where we have introduced̄D( j ) andN̄ ( j ), which are defined as follows:

D̄ =
∮

dθ

2π

∂x

∂θ
D = −i

∞∑
n=−∞

|xn( j )|2nDn( j ), (28a)
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N̄ =
∮

dθ

2π

∂x

∂θ

∂N
∂θ
=

∞∑
n=−∞

|xn( j )|2n2Nn( j ). (28b)

Equations (28a) and (28b) can be further simplified. Taking into account Eq. (26a)
and the fact that 1/(z+ i ε) = P(1/z)− iπδ(z), we can write

Dn( j ) = PV
∫

dω

2π

2i D̃(ω)

ω + nÄ( j )
+ D̃(nÄ( j )), (29)

where we took into account that̃D(ω) is an odd function. When summing overn
in Eq. (28a), only the last term in Eq. (29) will contribute for everyDn. Since the
contributions from the first term inDn andD−n cancel for eachn because

D(ω)

ω − nÄ( j )
− D(ω)

ω + nÄ( j )
= 2nD(ω)

ω2− n2Ä2( j )

is an odd function and integrates to zero. The final result for the coefficient¯̃D is

D̄( j ) = i
∞∑

n=−∞
|xn( j )|2nD̃(nÄ). (30a)

Performing similar steps withNn, we get the following expression for̄N :

N̄ ( j ) = 1

2

∞∑
n=−∞

|xn( j )|2n2Ñ(nÄ). (30b)

Particularizing to the case of an ohmic environment initially at zero temperature,
we haveÑ(ω) = η|ω|, D̃(ω) = iηω, which lead to

D̄( j ) = 2ηÄ( j )
∞∑

n=0

|xn( j )|2n2, (31a)

N̄ ( j ) = ηÄ( j )
∞∑

n=0

|xn( j )|2n3. (31b)

4. ENVIRONMENT-INDUCED DECAY RATE

Our aim in this section is to compute the environment-induced decay rate
by solving the averaged Fokker-Planck equation, Eq. (27), with the appropriate
boundary conditions. We begin by introducing a simplifying hypothesis.

4.1. The Harmonic Approximation

The nondissipative dynamics described by (18) is approximately harmonic
for energies much lower than the escape energyεs. In this case the frequency of
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that motion is simplyÄ0. For intermediate energies, the motion is qualitatively
similar, but with a somewhat smaller frequency. It is only for energies extremely
close to the escape energyεs that the motion is substantially different: the particle
needs a very large amount of time to complete one period and hence the frequency
tends to zero.

To obtain an order of magnitude estimate of the escape rate, it is legitimate to
approximate the classical motion of Eq. (18) by its harmonic approximation, since
this approximation is qualitatively valid for all the values of the energy except for
a very small region of energies extremely close toεs.5

In the case of vacuum decay in quantum field theory studied by Calzetta
et al. (2001, 2002) the harmonic approximation could not be introduced, since in
that case there existed a frequency threshold with a value greater thanÄ0 in the
dissipation, so that only Fourier modes with a frequency higher than the threshold
contributed to it. Hence it was crucial to consider the fully nonlinear dynamics of
the system. On the other hand, in our case the noise and dissipation kernels do not
exhibit such a threshold and it is possible to introduce the harmonic approximation,
which amounts to neglect the Fourier modes at higher frequency in front of the
lowest ones in the solution of Eq. (18).

Neglecting the nonlinear term of the potential in Eq. (18b), the solution of the
equations of motion with final conditionsX(t) = x and P(t) = p can be written
as

X(t ′) = 1

2

(
x − i p

MÄ0

)
eiÄ0(t ′−t) + 1

2

(
x + i p

MÄ0

)
e−iÄ0(t ′−t), (32a)

P(t ′) = 1

2
(i MÄ0x + p)eiÄ0(t ′−t) + 1

2
(−i MÄ0x + p)e−iÄ0(t ′−t). (32b)

The frequency of the motion is simply given byÄ( j ) = Ä0, and thus the action
variablej is simply given byj = ε/Ä0, beingε = p2/(2M)+Ä2

0x2/2 the energy.
To determine the action variable, we compare the solution forX(t ′) with Eq. (24),
and write

X(t ′) = 1

2

√
2 j

MÄ0
ei [θ+Ä0(t ′−t)] + 1

2

√
2 j

MÄ0
e−i [θ+Ä0(t ′−t)] , (33)

where we have identified the angle variableθ as

ei θ = MÄ0x − i p√
(MÄ0x)2+ p2

. (34)

5 In fact, an exact solution of the equations of motion, together with a numerical analysis of the Fokker-
Plank equation, reveals that the result that we will obtain here is not only qualitatively but also
quantitatively valid within the degree of approximation we are working.
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The decomposition of thex variable in terms ofθ and j is given by

x(θ , j ) = 1

2

√
2 j

MÄ0
ei θ + 1

2

√
2 j

MÄ0
e−i θ , (35)

so that

x1( j ) = x−1( j ) = 1

2

√
2 j

MÄ0
, xn = 0, n 6= −1, 1. (36)

The coefficientsD̄( j ) andN̄ ( j ) can be therefore expressed as

D̄( j ) = 2γ j , N̄ ( j ) = γ j , (37)

(we recall thatγ ≡ n/(2M)), and the averaged Fokker-Planck equation may be
written as

∂F

∂t
= 2γ

∂

∂ j

(
hÄ0

2
j̇
∂F

∂ j
+Ä0 j F

)
, (38)

or, equivalently, working with energies,

∂F

∂t
= 2γ

2

∂ε

(
ε0ε

∂F

∂ε
+ εF

)
, (39)

whereε0 ≡ hÄ0/2. It can also be rewritten as a conservation equation,

∂F

∂t
+ ∂8
∂ε
= 0, (40)

where

8 = −2γ

(
ε0ε

∂F

∂ε
+ εF

)
(41)

is the probability flux.

4.2. Escape Rate: Normal Mode Analysis

Assuming that the Fokker-Planck equation can be decomposed into a sum of
normal modes,

F(t, ε) =
∑

r

cr e−r t fr (ε), (42)

we get the following time-independent equation:

L fr + r fr = 0, L = 2γ
d

dε

(
ε0ε

d

dε
+ ε

)
. (43)

The boundary conditions of the partial differential equation are the following. First,
we have assumed that the particle is removed once it arrives at the separatrix, so
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that there will be no probability to find the particle at the separatrix:fr (εs) = 0.
Second, we will also assume a vanishing flux of incoming particles atε = 0, i.e.,
8(0)= 0, which is equivalent to demanding the finiteness offr and its derivative
at ε = 0 ( fr (0), f ′r (0) < ∞) as can be seen from Eq. (41).

The normal-mode analysis can be formulated as a standard Sturm–Liouville
problem. The operatorL, which may be written as

L = 2γ e−ε/ε0ε0
d

dε

(
eε/ε0ε

d

dε

)
+ 2γ , (44)

is self-adjoint with the aforementioned boundary conditions and the scalar product
defined by

( f, g) = (2γ )−1
∫ εs

0
dε eε/ε0 f ∗(ε)g(ε). (45)

Thus, the theory of differential equations guarantees that the eigenfunctionsfr (ε)
constitute a complete orthogonal set, and that the eigenvaluesr are real (Courant
and Hilbert, 1953). Furthermore, the operatorL is negative definite, which can be
seen as follows:

( f, L f ) = ε0

∫ εs

0
dε eε/ε0 f ∗(ε)

d

dε

[
ε e−ε/ε0

d

dε
(eε/ε0 f (ε))

]

= −ε0

∫ εs

0
dε ε e−ε/ε0

∣∣∣∣ d

dε
(eε/ε0 f (ε))

∣∣∣∣2 < 0, f 6= 0,

where we have integrated by parts in the last equality. This implies that the eigen-
valuesr are always positive, as expected.

Performing the change of variablesfr (ε) = 2γe−y f̄r̄ y , wherey ≡ ε/ε0 and
r̄ = r/(2γ ), the differential equationL fr = r fr adopts the form of the Laguerre
differential equation,

y f̄ ′′r̄ (y)+ (1− y) f̄ ′r̄ (y)+ r̄ f r̄ (y) = 0, (46)

whose unique regular solution is given by

f̄ r̄ (y) = N Lr̄ (y), (47)

whereLr̄ (y) are Laguerre functions (which reduce to the Laguerre polynomials
in the case of nonnegative integerr̄ ; see Gradsteyn and Ryzhik, 1980), andN is a
normalization constant.

The solution we have found verifies the first of the boundary conditions, the
regularity at the origin. Now we impose the second of the boundary conditions,
namely f̄ r̄ (ys) = 0 (with ys ≡ εs/ε0). This boundary condition will imply a dis-
cretization on the possible values of the escape rater . Finally, knowing the initial
state fi (ε) = F(0, ε), we will be able to reconstruct the solution by computing the
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coefficientscr :

cr = ( fr , fi ) = N
∫ εs

0
dε L r

2γ

(
ε

ε0

)
fi (ε). (48)

Unfortunately, it is not possible to determine analytically the possible values
of r̄ from the equationLr̄ (ys) = 0. However, if the potential barrier were infinitely
high, the second boundary condition would read limy→∞ e−yLr̄ (y) = 0, implying
that Lr̄ (y) should have, at most, a polynomial behavior at infinity, and the eigen-
values would bēr = 0, 1, 2. . ., so that eigenmodes with̄r 6= 0 would decay in a
time given byγ−1 or shorter. However, the potential barrier corresponds to a some
large but finite energy, and hence the real eigenvalues differ from those computed
in the infinite barrier case by a small quantity, at least for those eigenvalues corre-
sponding to eigenstates with characteristic energies much lower than the potential
barrier. Thus, we can compute them perturbatively.

Furthermore, the relevant contribution to the decay rate will be given by the
mode with the lowest eigenvalue, which will fulfill the condition̄r ¿ 1, since the
remaining modes will decay in a time of orderγ−1 at most. Thus, we proceed to
compute perturbatively the lowest-order mode by expanding the Laguerre function
aroundr̄ = 0:

Lr̄ (y) = 1+ r̄ [ln y+ γE− Ei(y)] + O(r̄ 2), (49)

whereγE = 0.577216. . . is Euler’s constant, and Ei(y) is the exponential integral
defined as Ei(y) ≡ PV

∫ y
−∞(eu/u) du. The expansion in Eq. (49) can be found by

solving perturbatively Eq. (46) up to orderr̄ , and imposing the correct boundary
condition aty = 0.

Therefore, imposing the boundary conditionLr̄ (ys) = 0 is equivalent to
demanding

r = 2γ r̄ ≈ 2γ

Ei(εs/ε0)− ln(εs/ε0)− γE
. (50)

Sinceεs is much larger thanε0, the exponential integral can be approximated by
Ei(εs/ε0) ≈ (ε0/εs)eεs/ε0, and the other two terms in the denominator become neg-
ligible in front of this one. Hence, we may approximate the lowest-order solution
by

r ≈ 2γ εs

ε0
exp

(
− εs

ε0

)
. (51)

Equation (51), which gives the probability per unit time for a particle to jump the
barrier, is our final result for the escape rate.

In the case of vacuum decay in quantum field theory studied by Calzetta
et al. (2001, 2002) the time-independent Fokker-Planck equation had a continu-
ous spectrum, and therefore in that case it was not possible either to perform an
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eigenvalue expansion, like the one we have performed in this subsection, or to
follow Kramers’s method, as will be done in the next subsection.

4.3. Escape Rate: Kramers’s Method

Our Fokker-Planck equation (39) is completely analogous to that found by
Kramers (1940) in the classical underdamped case, once we replacekT, the tem-
perature times Boltzmann’s constant, by the zero-point energy of the harmonic
oscillatorε0 = hÄ0/2.6 Therefore, as an alternative to the previous subsection,
we can apply the same method as Kramers to compute the decay rate.

Instead of imposing the correct boundary conditions, we look for the solutions
of the Fokker-Planck equation with constant flux8 = 80. Since the flux can be
rewritten as

8 = −2γ e−ε/ε0εε0
∂

∂ε
(eε/ε0 F), (52)

these solutions will be given by

F(ε) = 80

2γ ε0
e−ε/ε0

∫ εs

ε

dε′
eε
′/ε0

ε′ (53)

= 80

2γ ε0
e−ε/ε0[Ei(εs/ε0)− Ei(ε/ε0)].

Again, we have imposed thatF(εs) = 0 because we assume that when a particle
arrives at the separatrix it never reenters the potential well region. Notice that
the solution we have found has a logarithmic singular behavior at small energies,
which takes into account the injection of a probability flux through the pointε = 0
necessary for the maintenance of the constant flux. However, since we expect the
flux of probability to be very small, this contribution will be not very significative
and will affect only the region of energiesε∼< ε0, which are much lower than the
scape energyεs.

We can compute the flux80 by imposing the correct normalization of the
averaged Wigner functionF(ε), namely

∫ εs

0 dεF(ε) = 1:

80

2γ ε0

∫ εs

0
dε e−ε/ε0

∫ εs

ε

dε′
eε
′/ε0

ε′
= 1. (54)

The main contribution to the integral overε′ is due to those values forε′which differ
fromεs by a quantity of orderε0. We may replaceε′ by its value at the separatrix,εs.
Making this approximation, we can perform analytically the integrals in Eq. (54).

6 Notice that this is only true under the harmonic approximation. Had we not neglected the cubic term
in the equations of motion, our Fokker-Planck equation would not be equivalent to the one found by
Kramers in the classical underdamped case.
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Retaining only those terms which have an exponential factoreεs/ε0, we obtain the
final result for the flux of particles:

8 = 80 ≈ 2γ εs

ε0
exp

(
− εs

ε0

)
. (55)

Although we have assumed that the flux is constant to solve the differential equa-
tion, this is not actually the case, and the flux at the separatrix8s is propor-
tional to the total probability of finding the particle in the potential well region:
8s(t) = P(t)80. Integrating the conservation Eq. (40) with respect to the energy,
we easily find that the total probability decay follows the law

d P(t)

dt
+ P(t)80 = 0,

which may be integrated to giveP(t) = e−80t . Hence the probability flux80 is to
be identified with the escape rater of last subsection. We see that both methods
agree.

5. DISCUSSION

The study of quantum tunneling based on a real-time formulation seems cru-
cial to address highly nonequilibrium situations in which no adiabaticity assump-
tions can be made. As mentioned in the Introduction, a first step in this direction
was made in Calzettaet al. (2001, 2002), where the effect on vacuum decay in
quantum field theory due to the backreaction of the short-wavelength modes was
analyzed by regarding the long-wavelength modes responsible for tunneling as an
open quantum system. In that case it was found that such a backreaction seemed
to yield an enhancement of the decay rate. There are, however, a couple of aspects
which deserve, in our opinion, a more careful analysis. The first one is the need for
a suitable identification of the tunneling degrees of freedom and the corresponding
implementation of a system–environment separation which leads to the reformu-
lation of the problem in terms of an open quantum system. Second, when solving
the master equation that governs the time evolution of the reduced Wigner function
for the tunneling degree of freedom to obtain the vacuum decay rate, the attention
was focused on the backreaction of the environment (the short-wavelength modes)
and the higher derivative terms which would be uniquely responsible for tunneling
if the system were isolated were neglected.

In this paper we have considered a fairly simple quantum mechanical open
system, in which the system–environment separation is given beforehand and the
coupling constant governing the interaction between the system and the environ-
ment can be adjusted at will, rather than being self-consistently determined, as
happened to be the case for vacuum decay in field theory. Therefore, it is interest-
ing to check whether a similar enhancement of the tunneling rate is obtained in
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that simpler model and see if such an effect is generic. Furthermore, the result can
be considered more robust than that in the field theory case since the number of
important assumptions made is rather small. It is, thus, worthwhile to elaborate on
this point and recall the different approximations employed throughout the paper
to obtain the decay rate.

First of all, the master equation that we are considering in this paper can be
obtained by keeping terms of orderh and hγ at most, and restricting to values
of γ , which are small enough (in particular we should take (γ /Ä0)S∼< h, where
S is the characteristic action of the problem), so that the terms of orderγ 2 or
higher can be neglected7 (Roura, 2001). On the other hand, the master equation
obtained in this way contains a term with third-order derivatives of the reduced
Wigner function with respect to the momentum (the term of orderh2). This sort
of terms, which are absent in any diffusion equation with a finite Kramers–Moyal
expansion associated to a classical stochastic process, are intimately related to
genuinely quantum effects due to the nonlinearities of the potential and imply that
even a reduced Wigner function which is initially positive everywhere will acquire
negative values when it evolves in time. Moreover, this higher derivative term
would be uniquely responsible for tunneling if the system were isolated. Despite
its remarkable features, this term has been neglected in this paper, since otherwise
we were unable to obtain analytical results for the decay rate. This approximation,
whose justification will be further discussed below, constitutes the most drastic
assumption made throughout the paper.

Having neglected the higher derivative terms, the master equation is equiv-
alent to the Fokker-Planck equation associated to a Langevin equation with a
Gaussian stochastic source characterized by a nonlocal correlation function (the
nonlocal noise kernel). From this point on, most of the approximations employed
to compute the decay rate are more or less standard (H¨anggiet al., 1990). First,
we change to action-angle variables and make use of an adiabatic approximation
to eliminate the fast variable (the angle). This is consistent provided thatγ ¿ Ä0,
which is in agreement with the previous assumption of small enough values forγ .
Next, a harmonic approximation is introduced for the solutions to the equations
of motion for the isolated system which appear in both the master equation and
the Fokker–Planck equation. This approximation helps to obtain a rather simple
result for the decay rate and can be justified both qualitatively and quantitatively,
in contrast to the field theory case analyzed by Calzettaet al.(2001, 2002), where
the existence of a threshold for the dissipation and noise kernels would preclude
such an approximation. Finally, it is assumed that the characteristic decay time is

7 One might be concerned that the truncation of higher orders inγ when considering times much larger
than the characteristic relaxation timescale (i.e.,γ t À 1), as required to compute the decay rate,
might no longer be valid because of the existence of secular terms among the terms of higher order
in γ that have been neglected. Although arguments that justify such a truncation when computing the
decay rate can be given, this point might deserve a more careful analysis.
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much smaller than the relaxation and dynamical timescales:r ¿ γ ¿ Ä0, where
r is the decay rate (the inverse of the decay time). Althoughγ was required to be
small enough, the previous inequality can be fulfilled provided that the potential
barrier is sufficiently high, i.e.,εs is large enough.

After reviewing the main approximations employed, let us compare the result
obtained for the decay rate to that of Caldeira and Leggett (1981, 1983b) as well
as to the tunneling rate when the coupling to the environment is absent. Whereas
Caldeira and Leggett found that the interaction with the environment tends to sup-
press tunneling, we are not going to recover that result since, having neglected the
higher derivative terms responsible for tunneling in an isolated system, the dissipa-
tion and diffusion terms that appear in the master equation due to the backreaction
of the environment will always lead to a positive (or, at most, vanishing) probability
of escaping from the metastable well. Nevertheless, if the decay rate obtained were
much smaller or much larger than the tunneling rate for the isolated system so that
the timescales governing both processes are very different, one could expect that
the contribution to the decay rate from the process with a shortest characteristic
timescale would be dominant.

The tunneling rate for an isolated system initially trapped in the metastable
minimum of the potential considered in this paper is (Caldeira and Leggett, 1983b)

r t ∼ Ä0

(
εs

ε0

)1/2

exp

(
−18

5

εs

ε0

)
, (56)

where we recall thatε0 is the zero-point energy of a harmonic oscillator of fre-
quencyÄ0. On the other hand, Caldeira and Leggett (1981, 1983a) obtained the
modification of the tunneling rate due to the interaction with the environment,
which in the case of small dissipation is given by

r t ∼ Ä0

(
εs

ε0

)1/2

exp

[
− εs

ε0

(
18

5
+ 54ζ (3)

π3

γ

Ä0

)]
. (57)

Therefore, since the interaction with the environment simply adds a negative con-
tribution to the exponent, it always tends to suppress the tunneling rate. Finally,
the decay rate due to the activation-like effect obtained in the previous section
corresponds to

r ∼ γ εs

ε0
exp

(
− εs

ε0

)
, (58)

which is valid for smallγ and largeγs. Whenγ is very small, the decay rates from
Eqs. (56) and (57) become very close. Furthermore, although a smallγ implies a
small contribution to the decay rate associated to the activation-like process, it can
always be made arbitrarily larger than the tunneling rate by takingεs large enough.

The fact that the activation-like decay rate can be made arbitrarily large
as compared to the tunneling rate for the isolated system seems to suggest, as
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mentioned earlier, that even if the two phenomena were considered simulta-
neously, the former would be expected to dominate. If that were the case, it
would imply that the usual instanton methods, when applied to a system inter-
acting with an environment, downplay the role of the backreaction of the en-
vironment on the system dynamics. This can be qualitatively interpreted in the
following way: while, roughly speaking, the tunneling effect for an isolated sys-
tem can be regarded as a consequence of the energy fluctuations implied by
Heisenberg’s uncertainty principle, the interaction with an environment would
induce fluctuations on the system due to the quantum fluctuations of the envi-
ronment itself (Nagaev and B¨uttiker, 2002), which would enhance the tunneling
rate.

Nevertheless, to reach a definite conclusion, it would be desirable to deal
with the two contributions simultaneously and make sure that the higher derivative
terms do not disrupt the effect of the backreaction terms, even when the timescale
for the contribution to the decay rate from the former terms is much longer than
the timescale associated to the activation-like process. Unfortunately, dealing with
the higher derivative terms is not an easy task, and it seems hard to provide a
real-time description of the tunneling process in terms of the Wigner function
even for an isolated system (see, however, Risken and Vogel, 1988, for a first
step in that direction). One may try to gain partial information on the relation
between the two processes by considering different potentials with wider or nar-
rower barriers, since one would naively expect that tunneling is suppressed for
wide barriers while the activation-like contribution does not depend so much on
the width of the barrier, as long as the height remains the same. A couple of com-
ments concerning the freedom to modify the system potential are, nevertheless, in
order. First, the potential must be analytic in order to derive the master equation
for the reduced Wigner function. Second, when solving the formally equivalent
problem of a classical Brownian particle escaping from the potential well, we
assumed that once the particle reaches the maximum of the barrier it escapes
and never comes back, but if a very wide barrier is considered, the probability
that the particle comes back because of the fluctuations may become no longer
negligible.

We close this section insisting on the importance of finding a satisfactory
method to deal with the higher derivative terms, which would be very help-
ful to elucidate whether the enhancement of the decay rate obtained in this
paper and entirely due to the backreaction from the environment fluctuations
would still persist when the terms responsible for tunneling in isolated systems
are also taken into account. Such a method would have an interest in its own
right even if the results of Caldeira and Leggett (1981, 1983b) were
finally recovered when properly taking into account the higher derivative terms,
since it would constitute a key step in formulating a real-time description of
tunneling.
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